Deep-er Kernels

John Shawe-Taylor

Department of Computer Science
University College London

ICPRAM, Angers, March 2014
Deep learning has (re-)emerged as having important research and commercial value.

Deep belief networks and related approaches have led this charge.

Kernels are sometimes referred to as ‘shallow’.

Aim of this talk is to:
- Discuss what we mean by deep learning
- Describe a number of ways in which kernel learning has become ‘deeper’
Deep learning has (re-)emerged as having important research and commercial value.

Deep belief networks and related approaches have led this charge.

Kernels are sometimes referred to as ‘shallow’.

Aim of this talk is to:
- Discuss what we mean by deep learning
- Describe a number of ways in which kernel learning has become ‘deeper’
Deep learning has (re-)emerged as having important research and commercial value.

Deep belief networks and related approaches have led this charge.

Kernels are sometimes referred to as ‘shallow’.

Aim of this talk is to:
- Discuss what we mean by deep learning
- Describe a number of ways in which kernel learning has become ‘deeper’
Deep learning has (re-)emerged as having important research and commercial value.

Deep belief networks and related approaches have led this charge.

Kernels are sometimes referred to as ‘shallow’.

Aim of this talk is to:
- Discuss what we mean by deep learning
- Describe a number of ways in which kernel learning has become ‘deeper’
Why Shallow Learning?

- Kernels learn non-linear functions in the input space so would appear to be as flexible as deep learning systems.

- However, they actually implement linear functions in the kernel defined feature space:

 $\mathbf{x} \xrightarrow{\text{fixed}} \phi(\mathbf{x}) \xrightarrow{\text{learned}} \langle \mathbf{w}, \phi(\mathbf{x}) \rangle$

 so that the learning (of \mathbf{w}) only occurs in one ‘layer’.

- This is contrasted with deep learning where parameters are spread across several layers typically with non-linear transfer functions.

 - Learning of the deeper layers is often unsupervised with the final classifier trained with the earlier layers fixed.

 - Hence, we are effectively pre-learning a representation – this would be analogous to learning the kernel.
Kernels learn non-linear functions in the input space so would appear to be as flexible as deep learning systems.

However, they actually implement linear functions in the kernel defined feature space:

\[\mathbf{x} \xrightarrow{\text{fixed}} \phi(\mathbf{x}) \xrightarrow{\text{learned}} \langle \mathbf{w}, \phi(\mathbf{x}) \rangle \]

so that the learning (of \(\mathbf{w} \)) only occurs in one ‘layer’.

This is contrasted with deep learning where parameters are spread across several layers typically with non-linear transfer functions.

- Learning of the deeper layers is often unsupervised with the final classifier trained with the earlier layers fixed.
- Hence, we are effectively pre-learning a representation – this would be analogous to learning the kernel.
Kernels learn non-linear functions in the input space so would appear to be as flexible as deep learning systems. However, they actually implement linear functions in the kernel defined feature space:

\[\mathbf{x} \xrightarrow{\text{fixed}} \phi(\mathbf{x}) \xrightarrow{\text{learned}} \langle \mathbf{w}, \phi(\mathbf{x}) \rangle \]

so that the learning (of \(\mathbf{w} \)) only occurs in one ‘layer’.

This is contrasted with deep learning where parameters are spread across several layers typically with non-linear transfer functions.

- Learning of the deeper layers is often unsupervised with the final classifier trained with the earlier layers fixed.
- Hence, we are effectively pre-learning a representation – this would be analogous to learning the kernel.
In practice we typically do perform some learning of the kernel:

- fix some hyper-parameters via some heuristic (e.g. width σ of a Gaussian kernel)
- use cross-validation to adapt the hyperparameter to optimise performance of the task (classification, regression, etc)

In some respects this undermines the more principled approach espoused by kernel methods based on generalisation bounds:

- standard generalisation bounds no longer apply if we choose the feature space based on the training data
- even test set bounds will be invalidated if we include the testing data in the representation learning phase

Often more sophisticated representations encode ‘deep’ prior knowledge, but are ‘learned’ by trial and error

- for example the histograms of patch cluster presence used in an object detection system
What happens in practice?

- In practice we typically do perform some learning of the kernel:
 - fix some hyper-parameters via some heuristic (e.g. width σ of a Gaussian kernel)
 - use cross-validation to adapt the hyperparameter to optimise performance of the task (classification, regression, etc)
- In some respects this undermines the more principled approach espoused by kernel methods based on generalisation bounds:
 - standard generalisation bounds no longer apply if we choose the feature space based on the training data
 - even test set bounds will be invalidated if we include the testing data in the representation learning phase
- Often more sophisticated representations encode ‘deep’ prior knowledge, but are ‘learned’ by trial and error
 - for example the histograms of patch cluster presence used in an object detection system
What happens in practice?

- In practice we typically do perform some learning of the kernel:
 - fix some hyper-parameters via some heuristic (e.g. width σ of a Gaussian kernel)
 - use cross-validation to adapt the hyperparameter to optimise performance of the task (classification, regression, etc)
- In some respects this undermines the more principled approach espoused by kernel methods based on generalisation bounds:
 - standard generalisation bounds no longer apply if we choose the feature space based on the training data
 - even test set bounds will be invalidated if we include the testing data in the representation learning phase
- Often more sophisticated representations encode ‘deep’ prior knowledge, but are ‘learned’ by trial and error
 - for example the histograms of patch cluster presence used in an object detection system

Shawe-Taylor Deep-er Kernels
Aim of this talk

- Present a number of promising directions that tick (some of) the following boxes:
 - Learn a (kernel) representation possibly tuned to the main learning task
 - Provide analysis of the resulting system that supports its design and bounds its performance
 - Provide empirical evidence that supports the approach on real world data

- the different contributions may appear disjointed but I hope a convincing and coherent story will emerge:
 - deep-er learning is alive and kicking in the kernel methods approach!
Aim of this talk

- Present a number of promising directions that tick (some of) the following boxes:
 - Learn a (kernel) representation possibly tuned to the main learning task
 - Provide analysis of the resulting system that supports its design and bounds its performance
 - Provide empirical evidence that supports the approach on real world data
- the different contributions may appear disjointed but I hope a convincing and coherent story will emerge:
 - deep-er learning is alive and kicking in the kernel methods approach!
Aim of this talk

- Present a number of promising directions that tick (some of) the following boxes:
 - Learn a (kernel) representation possibly tuned to the main learning task
 - Provide analysis of the resulting system that supports its design and bounds its performance
 - Provide empirical evidence that supports the approach on real world data
- The different contributions may appear disjointed but I hope a convincing and coherent story will emerge:
 - Deep-er learning is alive and kicking in the kernel methods approach!
Aim of this talk

- Present a number of promising directions that tick (some of) the following boxes:
 - Learn a (kernel) representation possibly tuned to the main learning task
 - Provide analysis of the resulting system that supports its design and bounds its performance
 - Provide empirical evidence that supports the approach on real world data
- the different contributions may appear disjointed but I hope a convincing and coherent story will emerge:
 - deep-er learning is alive and kicking in the kernel methods approach!
Aim of this talk

Present a number of promising directions that tick (some of) the following boxes:

- Learn a (kernel) representation possibly tuned to the main learning task
- Provide analysis of the resulting system that supports its design and bounds its performance
- Provide empirical evidence that supports the approach on real world data

the different contributions may appear disjointed but I hope a convincing and coherent story will emerge:

- deep-er learning is alive and kicking in the kernel methods approach!
Aim of this talk

- Present a number of promising directions that tick (some of) the following boxes:
 - Learn a (kernel) representation possibly tuned to the main learning task
 - Provide analysis of the resulting system that supports its design and bounds its performance
 - Provide empirical evidence that supports the approach on real world data
- the different contributions may appear disjointed but I hope a convincing and coherent story will emerge:
 - deep-er learning is alive and kicking in the kernel methods approach!
Kernel matching pursuit greedily chooses training examples that determine directions in feature space that are well-suited to some task and then deflates.

Analysis combining sparse reconstruction with generalisation error bounds gives first bounds on performance in learnt subspace.

Allows different criteria for selection to be implemented in one framework, eg sparse PCA, classification, regression, canonical correlation analysis, etc. and all come with bounds.

Kernel matching pursuit greedily chooses training examples that determine directions in feature space that are well-suited to some task and then deflates.

Analysis combining sparse reconstruction with generalisation error bounds gives first bounds on performance in learnt subspace.

Allows different criteria for selection to be implemented in one framework, eg sparse PCA, classification, regression, canonical correlation analysis, etc. and all come with bounds.

Kernel matching pursuit greedily chooses training examples that determine directions in feature space that are well-suited to some task and then deflates.

Analysis combining sparse reconstruction with generalisation error bounds gives first bounds on performance in learnt subspace.

Allows different criteria for selection to be implemented in one framework, eg sparse PCA, classification, regression, canonical correlation analysis, etc. and all come with bounds.

Matching pursuit for KCCA

Require: two views \(K_x, K_y \) and sparsity parameter \(k > 0 \).

1: initialise index vector \(i = [] \) and an all one vector \(1 \).

2: **for** \(i = 1 \) to \(k \) **do**

3: set \(i \) to index of \(\max_j \frac{K_x[:,j]'K_y[:,j]}{\sqrt{K_x^2[i,i]K_y^2[i,i]}} \)

4: set \(\tau_x = K_x[:,i] \) and \(\tau_y = K_y[:,i] \) to deflate kernel matrices:

\[
K_x = K_x - \frac{\tau_x (\tau_x' K_x)}{\tau_x' \tau_x}
\]

\[
K_y = K_y - \frac{\tau_y (\tau_y' K_y)}{\tau_y' \tau_y}
\]

5: **end for**

6: solve KCCA on points indexed by final \(i \) to find \(\tilde{\alpha}_x \) and \(\tilde{\alpha}_y \) the duals of the projection vectors.
Figure: Bound plot for sparse KCCA using 1-dimension.
If we consider learning a representation as a pre-processing stage, it is natural to consider modelling the data with a probabilistic model. There are then two main methods of defining kernels from probabilistic models:

- Averaging over a model class - i.e. each model gives one feature:

\[\kappa(x, z) = \sum_{m \in M} P(x|m)P(z|m)P_M(m) \]

also known as the marginalisation kernel.

- Fisher kernels for cases where the model is determined by a real parameter vector.

Give a quick (tutorial) example of the Fisher kernel.
If we consider learning a representation as a pre-processing stage, it is natural to consider modelling the data with a probabilistic model.

There are then two main methods of defining kernels from probabilistic models:

- Averaging over a model class - i.e. each model gives one feature:
 \[
 \kappa(x, z) = \sum_{m \in M} P(x|m)P(z|m)P_M(m)
 \]
 also known as the marginalisation kernel.

- Fisher kernels for cases where the model is determined by a real parameter vector.

Give a quick (tutorial) example of the Fisher kernel.
If we consider learning a representation as a pre-processing stage, it is natural to consider modelling the data with a probabilistic model.

There are then two main methods of defining kernels from probabilistic models:

- Averaging over a model class - i.e. each model gives one feature:
 \[\kappa(x, z) = \sum_{m \in M} P(x|m)P(z|m)P_M(m) \]
 also known as the marginalisation kernel.

- Fisher kernels for cases where the model is determined by a real parameter vector

Give a quick (tutorial) example of the Fisher kernel
Fisher kernels

We assume the model is parametrised according to some parameters: consider the simple example of a 1-dim Gaussian distribution parametrised by μ and σ:

$$M = \left\{ P(x|\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right) : \theta = (\mu, \sigma) \in \mathbb{R}^2 \right\}.$$

The Fisher score vector is the derivative of the log likelihood of an input x wrt the parameters:

$$\log L_{(\mu,\sigma)}(x) = -\frac{(x - \mu)^2}{2\sigma^2} - \frac{1}{2} \log (2\pi\sigma).$$
Fisher kernels

- We assume the model is parametrised according to some parameters: consider the simple example of a 1-dim Gaussian distribution parametrised by μ and σ:

$$M = \left\{ P(x|\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right) : \theta = (\mu, \sigma) \in \mathbb{R}^2 \right\}.$$

- The Fisher score vector is the derivative of the log likelihood of an input x wrt the parameters:

$$\log \mathcal{L}_{(\mu, \sigma)}(x) = -\frac{(x - \mu)^2}{2\sigma^2} - \frac{1}{2} \log (2\pi\sigma).$$
Hence the score vector is given by:

\[g(\theta^0, x) = \left(\frac{x - \mu_0}{\sigma_0^2}, \frac{(x - \mu_0)^2}{\sigma_0^3} - \frac{1}{2\sigma_0} \right). \]

Taking \(\mu_0 = 0 \) and \(\sigma_0 = 1 \) the feature embedding is given by:
Fisher kernels

- Hence the score vector is given by:

 \[
g(\theta^0, x) = \left(\frac{x - \mu_0}{\sigma_0^2}, \frac{(x - \mu_0)^2}{\sigma_0^3} - \frac{1}{2\sigma_0} \right).
\]

- Taking \(\mu_0 = 0 \) and \(\sigma_0 = 1 \) the feature embedding is given by:
Fisher kernels

\[-2 - 1.5 - 1 - 0.5 0 0.5 1 1.5 2\]

\[-0.5 0 0.5 1 1.5 2 2.5 3 3.5\]
String kernels as Fisher kernels

- We can consider a Markov model of generating text conditioned on the previous $k - 1$-characters. The probability of a document d being generated by the model is therefore:

$$P(d) = \prod_{j=k}^{|d|} p_d[j-k+1:j-1] \rightarrow d_j,$$

- Uniform distribution model gives the class of string kernels - but distribution can now be learned based on a corpus.
- Can extend to probabilistic Finite State Automata learned from the corpus.
- Results competitive with tfidf BoWs on Reuters, with some improvements in average precision.

citation:

String kernels as Fisher kernels

- We can consider a Markov model of generating text conditioned on the previous \(k - 1 \)-characters. The probability of a document \(d \) being generated by the model is therefore

\[
P(d) = \prod_{j=k}^{\left\|d\right\|} p_{d[j-k+1:j-1] \rightarrow d_j},
\]

- Uniform distribution model gives the class of string kernels - but distribution can now be learned based on a corpus.
- Can extend to probabilistic Finite State Automata learned from the corpus.
- Results competitive with tfidf BoWs on Reuters, with some improvements in average precision.

String kernels as Fisher kernels

- We can consider a Markov model of generating text conditioned on the previous \(k - 1 \)-characters. The probability of a document \(d \) being generated by the model is therefore

\[
P(d) = \prod_{j=k}^{\left|d\right|} p_{d[j-k+1:j-1] \rightarrow d_j},
\]

- Uniform distribution model gives the class of string kernels - but distribution can now be learned based on a corpus.
- Can extend to probabilistic Finite State Automata learned from the corpus.
- Results competitive with tfidf BoWs on Reuters, with some improvements in average precision.

String kernels as Fisher kernels

- We can consider a Markov model of generating text conditioned on the previous $k-1$-characters. The probability of a document d being generated by the model is therefore:

$$P(d) = \prod_{j=k}^{\left|d\right|} p_{d[j-k+1:j-1] \to d_j},$$

- Uniform distribution model gives the class of string kernels - but distribution can now be learned based on a corpus.
- Can extend to probabilistic Finite State Automata learned from the corpus.
- Results competitive with tfidf BoWs on Reuters, with some improvements in average precision.

MKL puts a 1-norm constraint on a linear combination of kernels:

\[
\left\{ \kappa(x, x') = \sum_{t=1}^{N} z_t \kappa_t(x, x') : z_t \geq 0, \sum_{t=1}^{N} z_t = 1 \right\}
\]

and trains an SVM while optimizing \(z_t \)

- It is somewhat surprising that this remains a convex problem.
- It would, however, appear to lead to a significant danger of overfitting if more than a handful of kernels were considered.
- Question of how performance scales with \(N \)?
Multiple kernel learning

MKL puts a 1-norm constraint on a linear combination of kernels:

\[
\{ \kappa(x, x') = \sum_{t=1}^{N} z_t \kappa_t(x, x') : z_t \geq 0, \sum_{t=1}^{N} z_t = 1 \}
\]

and trains an SVM while optimizing \(z_t \)

It is somewhat surprising that this remains a convex problem.

It would, however, appear to lead to a significant danger of overfitting if more than a handful of kernels were considered.

Question of how performance scales with \(N \)?
MKL puts a 1-norm constraint on a linear combination of kernels:

\[
\kappa(x, x') = \sum_{t=1}^{N} z_t \kappa_t(x, x') : z_t \geq 0, \sum_{t=1}^{N} z_t = 1
\]

and trains an SVM while optimizing \(z_t \)

It is somewhat surprising that this remains a convex problem.

It would, however, appear to lead to a significant danger of overfitting if more than a handful of kernels were considered.

Question of how performance scales with \(N \)?
Multiple kernel learning

MKL puts a 1-norm constraint on a linear combination of kernels:

\[
\kappa(x, x') = \sum_{t=1}^{N} z_t \kappa_t(x, x') : z_t \geq 0, \sum_{t=1}^{N} z_t = 1
\]

and trains an SVM while optimizing \(z_t \)

It is somewhat surprising that this remains a convex problem

It would, however, appear to lead to a significant danger of overfitting if more than a handful of kernels were considered

Question of how performance scales with \(N \)?
The Rademacher complexity provides a way of measuring the complexity of a function class \mathcal{F} by testing how well on average it can align with random noise:

$$\hat{R}_m(\mathcal{F}) = \mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \frac{2}{m} \sum_{i=1}^{m} \sigma_i f(x_i) \right].$$

is known as the Rademacher complexity of the function class \mathcal{F}.
Rademacher complexity bound for MKL

- Learning over the convex hull of the union of the individual kernel spaces

\[\text{conv}\left(\bigcup_{t=1}^{N} F_t \right) \]

where \(F_t = \{ x \rightarrow \langle w, \phi_t(x) \rangle : \|w\| \leq 1 \} \) is the \(t \)-th kernel class.

- With Rademacher analysis obtain corresponding bound (using convex hull bound for Rademacher complexity):

\[
P(y \neq \text{sgn}(g(x))) \leq \frac{1}{m\gamma} \sum_{i=1}^{m} \xi_i + \frac{1}{\gamma} \hat{R}_m \left(\bigcup_{t=1}^{N} F_t \right) + 3\sqrt{\frac{\ln(2/\delta)}{2m}}
\]
Rademacher complexity bound for MKL

- Learning over the convex hull of the union of the individual kernel spaces

$$\text{conv} \left(\bigcup_{t=1}^{N} \mathcal{F}_t \right)$$

where $$\mathcal{F}_t = \{ x \rightarrow \langle \mathbf{w}, \phi_t(x) \rangle : \| \mathbf{w} \| \leq 1 \}$$ is the t-th kernel class.

- With Rademacher analysis, obtain corresponding bound (using convex hull bound for Rademacher complexity):

$$P(y \neq \text{sgn}(g(x))) \leq \frac{1}{m\gamma} \sum_{i=1}^{m} \xi_i + \frac{1}{\gamma} \hat{R}_m \left(\bigcup_{t=1}^{N} \mathcal{F}_t \right) + 3 \sqrt{\frac{\ln(2/\delta)}{2m}}$$

Shawe-Taylor | Deep-er Kernels
Bounding MKL

- Need a bound on \(\hat{R}_m \left(\mathcal{F} = \bigcup_{t=1}^{N} \mathcal{F}_t \right) \)

- McDiarmid gives with probability \(1 - \delta_0 \) of a random selection of \(\sigma^* \):

\[
\hat{R}_m(\mathcal{F}) \leq \frac{2}{m} \sup_{f \in \mathcal{F}} \sum_{i=1}^{m} \sigma_i^* f(x_i) + 4 \sqrt{\frac{\ln(1/\delta)_{t}}{2m}}
\]

and

\[
\frac{2}{m} \sup_{f \in \mathcal{F}_t} \sum_{i=1}^{m} \sigma_i^* f(x_i) \leq \hat{R}_m(\mathcal{F}_t) + 4 \sqrt{\frac{\ln(1/\delta_t)}{2m}}
\]

with probability \(1 - \delta_t \)
Bounding MKL

- Need a bound on
 \[\hat{R}_m \left(\mathcal{F} = \bigcup_{t=1}^{N} \mathcal{F}_t \right) \]

- McDiarmid gives with probability \(1 - \delta_0 \) of a random selection of \(\sigma^* \):

 \[\hat{R}_m(\mathcal{F}) \leq \frac{2}{m} \sup_{f \in \mathcal{F}} \sum_{i=1}^{m} \sigma_i^* f(x_i) + 4 \sqrt{\frac{\ln(1/\delta_t)}{2m}} \]

 and

 \[\frac{2}{m} \sup_{f \in \mathcal{F}_t} \sum_{i=1}^{m} \sigma_i^* f(x_i) \leq \hat{R}_m(\mathcal{F}_t) + 4 \sqrt{\frac{\ln(1/\delta_t)}{2m}} \]

 with probability \(1 - \delta_t \)
Hence taking $\delta_t = \delta/2(N + 1)$ for $t = 0, \ldots, N$

$$\hat{R}_m \left(\mathcal{F} = \bigcup_{t=1}^{N} \mathcal{F}_t \right)$$

$$\leq \frac{2}{m} \sup_{f \in \mathcal{F}} \sum_{i=1}^{m} \sigma_i^* f(x_i) + 4 \sqrt{\frac{\ln(2(N + 1)/\delta)}{2m}}$$

$$\leq \frac{2}{m} \max_{1 \leq t \leq N} \sup_{f \in \mathcal{F}_t} \sum_{i=1}^{m} \sigma_i^* f(x_i) + 4 \sqrt{\frac{\ln(2(N + 1)/\delta)}{2m}}$$

$$\leq \frac{2}{m} \max_{1 \leq t \leq N} \hat{R}_m(\mathcal{F}_t) + 8 \sqrt{\frac{\ln(2(N + 1)/\delta)}{2m}}$$

with probability $1 - \delta/2$.
Bounding MKL

This gives an overall bound on the generalisation of MKL of

\[
P(y \neq \text{sgn}(g(x))) \leq \frac{1}{m\gamma} \sum_{i=1}^{m} \xi_i + \frac{2}{\gamma m} \max_{1 \leq t \leq N} \sqrt{\text{tr}(K_t)} + \frac{8}{\gamma} \sqrt{\frac{\ln(2(N+1)/\delta)}{2m}} + 3 \sqrt{\frac{\ln(4/\delta)}{2m}}
\]

where \(K_t\) is the \(t\)-th kernel matrix.

Bound gives only a logarithmic dependence on the number of kernels.

This gives an overall bound on the generalisation of MKL of

\[P(y \neq \text{sgn}(g(x))) \leq \frac{1}{m\gamma} \sum_{i=1}^{m} \xi_i + \frac{2}{\gamma m} \max_{1 \leq t \leq N} \sqrt{\text{tr}(K_t)} + \frac{8}{\gamma} \sqrt{\frac{\ln(2(N+1)/\delta)}{2m}} + 3\sqrt{\frac{\ln(4/\delta)}{2m}} \]

where \(K_t \) is the \(t \)-th kernel matrix.

Bound gives only a logarithmic dependence on the number of kernels.

Experimental results with large-scale MKL

- Vedaldi et al. have applied to the PASCAL Visual Objects Challenge (VOC 2007) data and
 - improvements over the winners of the challenge in 17 out of the 20 categories
 - in more than half of the categories the increase in average precision was over 25%
 - have also scaled effectively to millions of kernels

Replacing the 2-norm regularisation of the SVM with a 1-norm gives a linear programme: can solve its dual using an iterative method:

1. initialise \(u_i = 1/m, i = 1, \ldots, m, \beta = \infty, J = \emptyset \)
2. choose \(j^* \) that maximises \(f(j) = \sum_{i=1}^{m} u_i y_i H_{ij} \)
3. if \(f(j^*) \leq \beta \) solve primal restricted to \(J \) and exit
4. \(J = J \cup \{j^*\} \)
5. Solve dual restricted to set \(J \) to give \(u_i, \beta \)
6. Go to 2

- Note that \(u_i \) is a distribution on the examples
- Each \(j \) added acts like an additional weak learner
- \(f(j) \) is simply the weighted classification accuracy
- Hence gives ‘boosting’ algorithm - with previous weights updated satisfying error bound
- Guaranteed convergence and soft stopping criteria
Column generation gives efficient MKL if we can pick the best weak learner in each \mathcal{F}_t efficiently:

$$\sup_{f \in \mathcal{F}_t} \sum_{i=1}^{m} u_i y_i f(x_i) = \sup_{\|w\| \leq 1} \sum_{i=1}^{m} u_i y_i \langle w, \phi_t(x_i) \rangle$$

$$= \sup_{\|w\| \leq 1} \left\langle w, \sum_{i=1}^{m} u_i y_i \phi_t(x_i) \right\rangle$$

$$= \left\| \sum_{i=1}^{m} u_i y_i \phi_t(x_i) \right\|$$

$$= \sqrt{u' Y K_t Y u} =: N_t$$

easily computable from the kernel matrices (note that u is sparse after first iteration and can also be chosen sparse at the start).
The optimal weak learner from \mathcal{F}_t is realised by the weight vector that achieves the supremum

$$w = \frac{\sum_{i=1}^{m} u_i y_i \phi_t(x_i)}{\|\sum_{i=1}^{m} u_i y_i \phi_t(x_i)\|}$$

which has dual representation:

$$\alpha_i = \frac{1}{N_t} u_i y_i$$

Hence, can use the linear programming boosting approach to implement multiple kernel learning.

More generally can view the u vector as a signal to refine other representations.
The optimal weak learner from \mathcal{F}_t is realised by the weight vector that achieves the supremum

$$w = \frac{\sum_{i=1}^{m} u_i y_i \phi_t(x_i)}{\|\sum_{i=1}^{m} u_i y_i \phi_t(x_i)\|}$$

which has dual representation:

$$\alpha_i = \frac{1}{N_t} u_i y_i$$

Hence, can use the linear programming boosting approach to implement multiple kernel learning.

More generally can view the u vector as a signal to refine other representations.
The optimal weak learner from \mathcal{F}_t is realised by the weight vector that achieves the supremum

$$w = \frac{\sum_{i=1}^m u_i y_i \phi_t(x_i)}{\|\sum_{i=1}^m u_i y_i \phi_t(x_i)\|}$$

which has dual representation:

$$\alpha_i = \frac{1}{N_t} u_i y_i$$

Hence, can use the linear programming boosting approach to implement multiple kernel learning.

More generally can view the u vector as a signal to refine other representations.
As an example consider Fisher kernels over a parametrised probabilistic model

- Signal u can be used to optimise the kernel by adjusting the parameters of the model
- Using HMMs for modelling time series data this approach was applied to forecasting foreign exchange rates.

Some encouraging results

Learning Fisher kernels

- As an example consider Fisher kernels over a parametrised probabilistic model
- Signal \(u \) can be used to optimise the kernel by adjusting the parameters of the model
- Using HMMs for modelling time series data this approach was applied to forecasting foreign exchange rates.
- Some encouraging results
As an example consider Fisher kernels over a parametrised probabilistic model.

Signal \(u \) can be used to optimise the kernel by adjusting the parameters of the model.

Using HMMs for modelling time series data this approach was applied to forecasting foreign exchange rates.

Some encouraging results

Learning Fisher kernels

As an example consider Fisher kernels over a parametrised probabilistic model.

Signal u can be used to optimise the kernel by adjusting the parameters of the model.

Using HMMs for modelling time series data this approach was applied to forecasting foreign exchange rates.

Some encouraging results:

Non-linear Feature Selection

There is an interesting result that relates kernel target alignment to maximal covariance with the output

\[\sqrt{\mathbb{E}(x,y) \sim P, (x',y') \sim P[yy' \kappa(x,x')] = \sup_{\|w\| \leq 1} \mathbb{E}(x,y) \sim P[y \langle w, \phi(x) \rangle]} \]

Suggests defining the contribution of a feature as

\[c_i = \mathbb{E}_{S \sim S_i} \left[\mathbb{E}(x,y) \sim P, (x',y') \sim P[yy' \kappa_S(x,x')] \right] - \mathbb{E}_{S' \sim S \setminus i} \left[\mathbb{E}(x,y) \sim P, (x',y') \sim P[yy' \kappa_{S'}(x,x')] \right], \]

where \(S_i \) and \(S \setminus i \) are distributions over fixed size sets of features.

\(\eta \)-influential if \(c_i > \eta \).
There is an interesting result that relates kernel target alignment to maximal covariance with the output:

\[
\sqrt{\mathbb{E}_{(x,y) \sim P,(x',y') \sim P}[yy' \kappa(x, x')] =}
\]

\[
= \sup_{w: \|w\| \leq 1} \mathbb{E}_{(x,y) \sim P}[y \langle w, \phi(x) \rangle]
\]

This suggests defining the contribution of a feature as:

\[
c_i = \mathbb{E}_{S \sim S_i} [\mathbb{E}_{(x,y) \sim P,(x',y') \sim P}[yy' \kappa S(x, x')] - \mathbb{E}_{S' \sim S \backslash i} [\mathbb{E}_{(x,y) \sim P,(x',y') \sim P}[yy' \kappa S'(x, x')] ,
\]

where \(S_i\) and \(S \backslash i\) are distributions over fixed size sets of features.

\(\eta\)-influential if \(c_i > \eta\).
There is an interesting result that relates kernel target alignment to maximal covariance with the output

\[
\sqrt{\mathbb{E}_{(x,y) \sim P,(x',y') \sim P}[yy' \kappa(x,x')]} = \\
= \sup_{w: \|w\| \leq 1} \mathbb{E}_{(x,y) \sim P}[y \langle w, \phi(x) \rangle]
\]

Suggests defining the contribution of a feature as

\[
c_i = E_{S \sim S_i} [E_{(x,y) \sim P,(x',y') \sim P}[yy' \kappa_S(x,x')]] - E_{S' \sim S \setminus i} [E_{(x,y) \sim P,(x',y') \sim P}[yy' \kappa_{S'}(x,x')]],
\]

where \(S_i\) and \(S \setminus i\) are distributions over fixed size sets of features.

\(\eta\)-influential if \(c_i > \eta\).
200-dimensional XOR classification problem, with a subsample size of 1,000 and repeated over 10,000 random partitions of the features. The expected contribution of the η-influential features, shown in black, are clearly separated from that of all irrelevant variables.
Some theoretically justified properties:

- Irrelevant features have negative expected contribution
- Chances of relevant feature being in bottom quarter of the ranked contributions on a sufficiently large random sample is arbitrarily small
- Hence, can cull 25% of bottom ranked features without risking losing good features
- possibility of locking in features that appear in top 25% consistently
Some theoretically justified properties:

- Irrelevant features have negative expected contribution
- Chances of relevant feature being in bottom quarter of the ranked contributions on a sufficiently large random sample is arbitrarily small
- Hence, can cull 25% of bottom ranked features without risking losing good features
- Possibility of locking in features that appear in top 25% consistently
Some theoretically justified properties:

- Irrelevant features have negative expected contribution
- Chances of relevant feature being in bottom quarter of the ranked contributions on a sufficiently large random sample is arbitrarily small
- Hence, can cull 25% of bottom ranked features without risking losing good features
- Possibility of locking in features that appear in top 25% consistently
Some theoretically justified properties:

- Irrelevant features have negative expected contribution
- Chances of relevant feature being in bottom quarter of the ranked contributions on a sufficiently large random sample is arbitrarily small
- Hence, can cull 25% of bottom ranked features without risking losing good features
- Possibility of locking in features that appear in top 25% consistently
Some theoretically justified properties:

- Irrelevant features have negative expected contribution
- Chances of relevant feature being in bottom quarter of the ranked contributions on a sufficiently large random sample is arbitrarily small
- Hence, can cull 25% of bottom ranked features without risking losing good features
- Possibility of locking in features that appear in top 25% consistently
Consider 200-dimensional function that is XOR of the first two features. Take Gaussian kernel - gives results after successive cullings:
Related approaches

- The criterion has been studied as the Hilbert-Schmidt Independence criterion and used in both a greedy forward addition of features (FoHsic) and a greedy backward elimination of features (BaHsic) (Song et al, 2007)
- Our innovation is to use a probabilistic sampling of subsets of features to estimate individual feature contributions
- Recursive feature elimination (RFE) uses a measure of movement in the weight space to prioritise removal of features but is relatively costly
- Stability selection (Stab. Sel.) uses sampling of 1-norm regularised linear classifiers to estimate importance of variables
- Simple correlation with target (Corr. Coeff.) can also be used as a baseline.
Related approaches

- The criterion has been studied as the Hilbert-Schmidt Independence criterion and used in both a greedy forward addition of features (FoHsic) and a greedy backward elimination of features (BaHsic) (Song et al, 2007).
- Our innovation is to use a probabilistic sampling of subsets of features to estimate individual feature contributions.
- Recursive feature elimination (RFE) uses a measure of movement in the weight space to prioritise removal of features but is relatively costly.
- Stability selection (Stab. Sel.) uses sampling of 1-norm regularised linear classifiers to estimate importance of variables.
- Simple correlation with target (Corr. Coeff.) can also be used as a baseline.
Related approaches

- The criterion has been studied as the Hilbert-Schmidt Independence criterion and used in both a greedy forward addition of features (FoHsic) and a greedy backward elimination of features (BaHsic) (Song et al, 2007)
- Our innovation is to use a probabilistic sampling of subsets of features to estimate individual feature contributions
- Recursive feature elimination (RFE) uses a measure of movement in the weight space to prioritise removal of features but is relatively costly
- Stability selection (Stab. Sel.) uses sampling of 1-norm regularised linear classifiers to estimate importance of variables
- Simple correlation with target (Corr. Coeff.) can also be used as a baseline.
Related approaches

- The criterion has been studied as the Hilbert-Schmidt Independence criterion and used in both a greedy forward addition of features (FoHsic) and a greedy backward elimination of features (BaHsic) (Song et al, 2007).
- Our innovation is to use a probabilistic sampling of subsets of features to estimate individual feature contributions.
- Recursive feature elimination (RFE) uses a measure of movement in the weight space to prioritise removal of features but is relatively costly.
- Stability selection (Stab. Sel.) uses sampling of 1-norm regularised linear classifiers to estimate importance of variables.
- Simple correlation with target (Corr. Coeff.) can also be used as a baseline.
The criterion has been studied as the Hilbert-Schmidt Independence criterion and used in both a greedy forward addition of features (FoHsic) and a greedy backward elimination of features (BaHsic) (Song et al, 2007).

Our innovation is to use a probabilistic sampling of subsets of features to estimate individual feature contributions.

Recursive feature elimination (RFE) uses a measure of movement in the weight space to prioritise removal of features but is relatively costly.

Stability selection (Stab. Sel.) uses sampling of 1-norm regularised linear classifiers to estimate importance of variables.

Simple correlation with target (Corr. Coeff.) can also be used as a baseline.
Results

On artificial data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Algorithm</th>
<th>Accuracy</th>
<th>Features</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Weston</td>
<td>randSel</td>
<td>97.7 ± 2.0</td>
<td>3.0 ± 0.0</td>
<td>91.8 ± 23.1</td>
<td>72.0 ± 16.6</td>
</tr>
<tr>
<td></td>
<td>BaHsic</td>
<td>97.3 ± 3.1</td>
<td>5.0 ± 0.0</td>
<td>91.5 ± 19.4</td>
<td>70.7 ± 14.9</td>
</tr>
<tr>
<td></td>
<td>FoHsic</td>
<td>97.1 ± 3.1</td>
<td>6.0 ± 0.0</td>
<td>95.9 ± 12.0</td>
<td>74.7 ± 17.7</td>
</tr>
<tr>
<td></td>
<td>Corr. Coeff.</td>
<td>92.4 ± 7.8</td>
<td>4.0 ± 0.0</td>
<td>96.1 ± 15.1</td>
<td>76.0 ± 15.5</td>
</tr>
<tr>
<td></td>
<td>Stab. Sel.</td>
<td>97.3 ± 3.1</td>
<td>2.0 ± 0.0</td>
<td>100.0 ± 0.0</td>
<td>40.0 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>RFE</td>
<td>95.3 ± 3.9</td>
<td>5.0 ± 0.0</td>
<td>66.9 ± 33.7</td>
<td>56.0 ± 13.5</td>
</tr>
<tr>
<td>Non-Linear Weston</td>
<td>randSel</td>
<td>99.0 ± 1.4</td>
<td>5.0 ± 0.0</td>
<td>100.0 ± 0.0</td>
<td>89.3 ± 12.8</td>
</tr>
<tr>
<td></td>
<td>BaHsic</td>
<td>99.8 ± 0.9</td>
<td>4.0 ± 0.0</td>
<td>100.0 ± 0.0</td>
<td>80.0 ± 7.6</td>
</tr>
<tr>
<td></td>
<td>FoHsic</td>
<td>99.8 ± 0.9</td>
<td>4.0 ± 0.0</td>
<td>100.0 ± 0.0</td>
<td>82.7 ± 7.0</td>
</tr>
<tr>
<td></td>
<td>Corr. Coeff.</td>
<td>56.2 ± 6.8</td>
<td>21.0 ± 0.0</td>
<td>1.7 ± 2.5</td>
<td>18.7 ± 31.6</td>
</tr>
<tr>
<td></td>
<td>Stab. Sel.</td>
<td>50.0 ± 7.1</td>
<td>2.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
<td>0.0 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>RFE</td>
<td>98.9 ± 2.7</td>
<td>5.0 ± 0.0</td>
<td>97.8 ± 5.9</td>
<td>100.0 ± 0.0</td>
</tr>
<tr>
<td>XOR</td>
<td>randSel</td>
<td>95.7 ± 3.3</td>
<td>2.0 ± 0.0</td>
<td>100.0 ± 0.0</td>
<td>100.0 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>BaHsic</td>
<td>95.7 ± 3.3</td>
<td>2.0 ± 0.0</td>
<td>100.0 ± 0.0</td>
<td>100.0 ± 0.0</td>
</tr>
<tr>
<td></td>
<td>FoHsic</td>
<td>52.0 ± 6.5</td>
<td>53.0 ± 0.0</td>
<td>9.4 ± 25.3</td>
<td>36.7 ± 44.2</td>
</tr>
<tr>
<td></td>
<td>Corr. Coeff.</td>
<td>58.1 ± 14.9</td>
<td>8.0 ± 0.0</td>
<td>10.4 ± 10.3</td>
<td>50.0 ± 42.3</td>
</tr>
<tr>
<td></td>
<td>Stab. Sel.</td>
<td>49.3 ± 11.1</td>
<td>2.0 ± 0.0</td>
<td>13.3 ± 22.9</td>
<td>13.3 ± 22.9</td>
</tr>
<tr>
<td></td>
<td>RFE</td>
<td>91.8 ± 12.1</td>
<td>2.0 ± 0.0</td>
<td>96.7 ± 12.9</td>
<td>96.7 ± 12.9</td>
</tr>
</tbody>
</table>
Results

On real world omic and microarray data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Algorithm</th>
<th>Accuracy</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>randSel</td>
<td>82.9 ± 8.4</td>
<td>64.6 ± 70.3</td>
</tr>
<tr>
<td>Task 1</td>
<td>BaHsic</td>
<td>81.7 ± 9.0</td>
<td>74.7 ± 101.3</td>
</tr>
<tr>
<td></td>
<td>FoHsic</td>
<td>81.3 ± 9.4</td>
<td>68.0 ± 66.5</td>
</tr>
<tr>
<td></td>
<td>Corr. Coeff.</td>
<td>82.4 ± 8.8</td>
<td>123.6 ± 85.8</td>
</tr>
<tr>
<td></td>
<td>Stab. Sel.</td>
<td>82.9 ± 7.3</td>
<td>121.7 ± 56.4</td>
</tr>
<tr>
<td></td>
<td>RFE</td>
<td>81.9 ± 8.0</td>
<td>236.2 ± 160.2</td>
</tr>
<tr>
<td>Task 3</td>
<td>BaHsic</td>
<td>85.6 ± 9.5</td>
<td>53.3 ± 39.5</td>
</tr>
<tr>
<td></td>
<td>FoHsic</td>
<td>85.6 ± 8.8</td>
<td>53.6 ± 44.7</td>
</tr>
<tr>
<td></td>
<td>Corr. Coeff.</td>
<td>85.4 ± 8.8</td>
<td>132.9 ± 89.7</td>
</tr>
<tr>
<td></td>
<td>Stab. Sel.</td>
<td>84.1 ± 9.6</td>
<td>60.0 ± 47.9</td>
</tr>
<tr>
<td></td>
<td>RFE</td>
<td>83.9 ± 9.2</td>
<td>43.5 ± 71.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Algorithm</th>
<th>Accuracy</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>randSel</td>
<td>86.0 ± 8.1</td>
<td>45.3 ± 33.6</td>
</tr>
<tr>
<td>Task 3</td>
<td>BaHsic</td>
<td>85.6 ± 9.5</td>
<td>53.3 ± 39.5</td>
</tr>
<tr>
<td></td>
<td>FoHsic</td>
<td>85.6 ± 8.8</td>
<td>53.6 ± 44.7</td>
</tr>
<tr>
<td></td>
<td>Corr. Coeff.</td>
<td>85.4 ± 8.8</td>
<td>132.9 ± 89.7</td>
</tr>
<tr>
<td></td>
<td>Stab. Sel.</td>
<td>84.1 ± 9.6</td>
<td>60.0 ± 47.9</td>
</tr>
<tr>
<td></td>
<td>RFE</td>
<td>83.9 ± 9.2</td>
<td>43.5 ± 71.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Algorithm</th>
<th>Accuracy</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB</td>
<td>randSel</td>
<td>87.6 ± 4.9</td>
<td>58.5 ± 93.8</td>
</tr>
<tr>
<td>Task 3</td>
<td>BaHsic</td>
<td>86.1 ± 6.4</td>
<td>61.2 ± 94.7</td>
</tr>
<tr>
<td></td>
<td>FoHsic</td>
<td>85.2 ± 7.9</td>
<td>52.5 ± 92.9</td>
</tr>
<tr>
<td></td>
<td>Corr. Coeff.</td>
<td>84.1 ± 6.6</td>
<td>143.5 ± 114.2</td>
</tr>
<tr>
<td></td>
<td>Stab. Sel.</td>
<td>87.1 ± 5.9</td>
<td>161.8 ± 136.0</td>
</tr>
<tr>
<td></td>
<td>RFE</td>
<td>85.7 ± 6.8</td>
<td>158.0 ± 137.6</td>
</tr>
</tbody>
</table>
Have applied to Deep learning challenge (Black Box Learning Challenge 2013)

- Initial sparse filtering step (Jiquan et al., 2011) – just one preprocessing layer
- performed the culling steps described above
- used the LPBoost MKL method to combine the corresponding kernels created
- Method was third in the final ranking (scored 0.685 vs winning score of 0.702)

Have applied to Deep learning challenge (Black Box Learning Challenge 2013)

- Initial sparse filtering step (Jiquan et al., 2011) – just one preprocessing layer
- performed the culling steps described above
- used the LPBoost MKL method to combine the corresponding kernels created
- Method was third in the final ranking (scored 0.685 vs winning score of 0.702)

Have applied to Deep learning challenge (Black Box Learning Challenge 2013)

- Initial sparse filtering step (Jiquan et al., 2011) – just one preprocessing layer
- performed the culling steps described above
- used the LPBoost MKL method to combine the corresponding kernels created
- Method was third in the final ranking (scored 0.685 vs winning score of 0.702)

Results: Deep Learning Challenge

Have applied to Deep learning challenge (Black Box Learning Challenge 2013)

- Initial sparse filtering step (Jiquan et al., 2011) – just one preprocessing layer
- performed the culling steps described above
- used the LPBoost MKL method to combine the corresponding kernels created

- Method was third in the final ranking (scored 0.685 vs winning score of 0.702)

Results: Deep Learning Challenge

Have applied to Deep learning challenge (Black Box Learning Challenge 2013)

- Initial sparse filtering step (Jiquan et al., 2011) – just one preprocessing layer
- performed the culling steps described above
- used the LPBoost MKL method to combine the corresponding kernels created
- Method was third in the final ranking (scored 0.685 vs winning score of 0.702)

Cleavage site prediction is a difficult task: applied methods to Predisi dataset.

Accuracy for the signal peptide problem.

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Representation</td>
<td>67.20 ± 4.71</td>
</tr>
<tr>
<td>Sparse Filtering + Stab. Sel.</td>
<td>71.46 ± 2.93</td>
</tr>
<tr>
<td>Sparse Filtering + RFE</td>
<td>71.81 ± 2.79</td>
</tr>
<tr>
<td>Sparse Filtering + RandSel</td>
<td>72.75 ± 2.85</td>
</tr>
<tr>
<td>Sparse Filtering + RandSel & MKL</td>
<td>75.28 ± 1.91</td>
</tr>
</tbody>
</table>

Appears to outperform 72.9% – best reported results in the literature, though comparison is not exact.

Cleavage site prediction is difficult task: applied methods to Predisi dataset.

Accuracy for the signal peptide problem.

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Representation</td>
<td>67.20 ± 4.71</td>
</tr>
<tr>
<td>Sparse Filtering + Stab. Sel.</td>
<td>71.46 ± 2.93</td>
</tr>
<tr>
<td>Sparse Filtering + RFE</td>
<td>71.81 ± 2.79</td>
</tr>
<tr>
<td>Sparse Filtering + RandSel</td>
<td>72.75 ± 2.85</td>
</tr>
<tr>
<td>Sparse Filtering + RandSel & MKL</td>
<td>75.28 ± 1.91</td>
</tr>
</tbody>
</table>

Appears to outperform 72.9% – best reported results in the literature, though comparison is not exact.

Cleavage site prediction is difficult task: applied methods to Predisi dataset.

Accuracy for the signal peptide problem.

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Representation</td>
<td>67.20 ± 4.71</td>
</tr>
<tr>
<td>Sparse Filtering + Stab. Sel.</td>
<td>71.46 ± 2.93</td>
</tr>
<tr>
<td>Sparse Filtering + RFE</td>
<td>71.81 ± 2.79</td>
</tr>
<tr>
<td>Sparse Filtering + RandSel</td>
<td>72.75 ± 2.85</td>
</tr>
<tr>
<td>Sparse Filtering + RandSel & MKL</td>
<td>75.28 ± 1.91</td>
</tr>
</tbody>
</table>

Appears to outperform 72.9% – best reported results in the literature, though comparison is not exact.

Summary and Conclusions

- Learning deep representations is important for analysis of real data
- Many kernel practitioners are using deep learning but typically in a relatively ad-hoc manner
- Attempts to use more principled methods have been rewarded with considerable success: in some cases comparable to ‘real’ deep learning
- There is already a range of theoretical results relating to deep-er learning kernel methods that place the approaches on a firm-er footing
- Many potential directions for further exploration: perhaps key question is understanding what are the properties of real data that ensure deep learning is effective
Learning deep representations is important for analysis of real data.

Many kernel practitioners are using deep learning but typically in a relatively ad-hoc manner.

Attempts to use more principled methods have been rewarded with considerable success: in some cases comparable to ‘real’ deep learning.

There is already a range of theoretical results relating to deep-er learning kernel methods that place the approaches on a firm-er footing.

Many potential directions for further exploration: perhaps key question is understanding what are the properties of real data that ensure deep learning is effective.
Summary and Conclusions

- Learning deep representations is important for analysis of real data.
- Many kernel practitioners are using deep learning but typically in a relatively ad-hoc manner.
- Attempts to use more principled methods have been rewarded with considerable success: in some cases comparable to ‘real’ deep learning.
- There is already a range of theoretical results relating to deep-er learning kernel methods that place the approaches on a firm-er footing.
- Many potential directions for further exploration: perhaps key question is understanding what are the properties of real data that ensure deep learning is effective.
Learning deep representations is important for analysis of real data.

Many kernel practitioners are using deep learning but typically in a relatively ad-hoc manner.

Attempts to use more principled methods have been rewarded with considerable success: in some cases comparable to ‘real’ deep learning.

There is already a range of theoretical results relating to deep-er learning kernel methods that place the approaches on a firm-er footing.

Many potential directions for further exploration: perhaps key question is understanding what are the properties of real data that ensure deep learning is effective.
Summary and Conclusions

- Learning deep representations is important for analysis of real data.
- Many kernel practitioners are using deep learning but typically in a relatively ad-hoc manner.
- Attempts to use more principled methods have been rewarded with considerable success: in some cases comparable to ‘real’ deep learning.
- There is already a range of theoretical results relating to deep-er learning kernel methods that place the approaches on a firmer footing.
- Many potential directions for further exploration: perhaps key question is understanding what are the properties of real data that ensure deep learning is effective.